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ABSTRACT
A common metaphor to describe the movement of people
within a city is that of blood flowing through the veins of a
living organism. We often speak of the ‘pulse of the city’
when referring to flow patterns we observe. Here we extend
this metaphor by hypothesising that by monitoring the flow
of people through a city we can assess the city’s health, as
a nurse takes a patient’s heart-rate and blood pressure dur-
ing a routine health check. Using an automated fare col-
lection dataset of journeys made on the London rail system,
we build a classification model that identifies areas of high
deprivation as measured by the Indices of Multiple Depri-
vation, and achieve a precision, sensitivity and specificity
of 0.805, 0.733 and 0.810, respectively. We conclude with a
discussion of the potential benefits this work provides to city
planning, policymaking, and citizen engagement initiatives.
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INTRODUCTION
Large contemporary cities exhibit complex spatial and tem-
poral dynamics, such that quality of life and the environment
can vary significantly between adjacent areas and change
over relatively short time periods. It is well known that
the planet is undergoing a rapid population shift towards
urban environments, with an estimated growth of 5 million
new city dwellers each month in developing countries. With
rapid growth comes an ever increasing need for effective
planning and management of urban infrastructure. Indeed,
a 2008 United Nations report into the state of the world’s
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cities showed that inequality in urban environments is on
the rise, as some areas and communities benefit more than
others from economic growth and investment in public ser-
vices [20]. The report states that urban inequality has a detri-
mental effect on citizens’ health, education and participation
in society and the economy, which in turn leads to social un-
rest and the diversion of resources from productive public
investment toward security services, thus exacerbating the
problem further. Therefore the importance of averting and
rebalancing such inequality cannot be overstated.

To efficiently allocate limited resources, policymakers and
agencies first need to identify which areas are in most need
of intervention in order to alleviate deprivation. Assessment
of city neighbourhoods’ relative prosperity or deprivation
may take place only once every few years, and the larger
the assessment window, the more likely that problem areas
will deteriorate. Thus, developing new methods of identi-
fying urban inequality swiftly and at low cost would offer
significant social and economic benefits. In this paper we
ask whether we can identify deprived areas of the city by
analysing the flow of people on public transport systems.
Cities worldwide are adopting the use of RFID smart-card
and sensor based automated fare collection systems to pro-
vide access to public transport systems, such as London’s
Oyster card which accounts for more than 84% of all jour-
neys.1 With such high coverage, these systems offer a de-
tailed real-time picture of peoples’ movement between dif-
ferent parts of the city. To test the hypothesis that automated
fare collection systems can be used as rapid, low cost de-
privation detectors, we define a number of features derived
from transit data and use them to build and test classification
models.

BACKGROUND AND RELATED WORK
Since 2000 the UK Office for National Statistics has pub-
lished, every three or four years, the The Indices of Multiple
Deprivation (IMD), a set of indicators which measure depri-
vation of small census areas in England known as Lower-
layer Super Output Areas [13]. These census areas were de-
signed to have a roughly uniform population distribution so
that a fine grained comparison of the relative deprivation of
different parts of England is possible. The formulation of
the IMD follows the principles set out by Townsend [19], in
which the author argues that deprivation ought to be defined

1http://www.whatdotheyknow.com/request/oyster card usage -
Retrieved 9/03/12



in such a way that it captures the effects of several differ-
ent factors. In particular, the IMD consists of the following
seven components, here listed with examples (not exhaus-
tive) of factors they measure: Income Deprivation - num-
ber of people claiming Income Support, Child Tax Credits
or Asylum; Employment Deprivation - number of claimants
of Jobseeker’s Allowance or Incapacity Benefit; Health De-
privation and Disability - including a standard measure of
premature death, rate of adults suffering mood and anxiety
disorders; Education, Skills and Training Deprivation - ed-
ucation level attainment, proportion of working adults with
no qualifications; Barriers to Housing and Services - home-
lessness, overcrowding, distance to essential services; Crime
- rates of different kinds of criminal act; Living Environment
Deprivation - housing condition, air quality, rate of road traf-
fic accidents; and finally a composite measure which is a
weighted mean of the seven domains. Note also that the
IMD provide relative, rather than absolute measures of de-
privation. This is less than ideal, since inequality could be
reduced by lowering standards of living in less deprived ar-
eas, as well as the more desirable reverse, and with a rel-
ative measure we would be unable to determine which has
occurred.

The indices have been used by central government as crite-
ria for allocating resources to regeneration programmes and
grants to community groups; by local authorities to identify
areas in need of support or intervention; and also by resi-
dents to hold authorities to account [13]. However, not dis-
regarding the clear utility of this kind of information, one
shortcoming is the time frame associated with collating and
publishing the data. For example, the latest version of the
English IMD, which we use in this study, was published in
2010 yet pertains to data mostly from 2008 and even partly
from as early as 2001. To overcome this limitation, research-
ers have recently proposed several techniques for data col-
lection from ubiquitous sources, such as social media, phone
call records and smart card sensors, in order to provide low
cost, real-time proxy measures for community well being.
For example, Kramer [10] found that the difference between
the number of positive and negative words used in Facebook
status updates covaries with self-reported “satisfaction with
life” in the US. Similarly, Quercia et al. found that senti-
ment expressed in tweets [16] and the topic of tweets [17]
in London, aggregated by the area associated with the tweet
or Twitter profile, correlates with the composite IMD score
of that area. A limitation noted in these works, however, is
the large demographic bias of Twitter users. The majority of
Twitter users are male, under 35 and with a relatively high
income. Mislove et al. [14] also suggest that the ethnicity
of twitter users in the US is not representative of the general
population. Similarly, although Facebook has a more even
gender distribution, in the UK around 60% of users are less
than 35 years of age.2

Research that does not suffer such a population bias involv-

2http://www.insidefacebook.com/2010/06/08/
whos-using-facebook-around-the-world-the-
demographics-of-facebooks-top-15-country-
markets/ - retrieved 29/05/2012

ing the IMD includes Eagle et al. [5], in which the authors
derive a measure of communication diversity from phone
call records in England, and find that higher diversity (i.e., the
more geographically dispersed a person’s social connections)
tallies with the composite IMD score aggregated to telephone
exchange areas. We adapt this diversity measure to the ur-
ban mobility case, but we do not aggregate IMD census ar-
eas, since the scores of adjacent areas can differ significantly,
thus we offer a finer grained analysis. Furthermore, we do
not limit our analysis to the composite IMD score, but addi-
tionally investigate each of the seven domains separately.

Other work that analyses the relationship between urban pub-
lic transport use and composite IMD score is Lathia et al. [12],
in which the authors find that more deprived areas tend to
receive passenger flow from a higher number of other areas
compared to less deprived areas, and they also uncover some
evidence of social segregation. However, the focus of [12] is
the investigation of social mixing and homophily based on
trip data. Thus far, no work has been done which explicitly
attempts to mine automated fare collection data in order to
measure and predict urban social deprivation. In the follow-
ing sections we introduce the data analysis and classification
methods we adopt to do just this.

MINING TRANSIT DATA
In this section we first introduce the dataset and its context,
before describing how we extract features of passenger flows
and the hypotheses guiding the process.

London and Oyster Card Data
The public transport system in London consists of several
interconnected subsystems, incorporating multiple modes of
transport. These include the London Underground (known
colloquially as the Tube), the Overground rail system, an
extensive bus network, water-borne transport and parts of
the UK National Rail network, of which many services ter-
minate in London. In 2003, the operators of this system,
Transport for London, introduced an RFID-based technol-
ogy, known as Oyster card, which serves to replace tradi-
tional paper-based magnetic stripe tickets. Oyster cards of-
fer access to the entire multimodal system and thus have the
potential to provide a complete picture of public transport in
London. We are presently limited to data pertaining to the
rail subnetworks, which include a total of 588 stations. Our
initial dataset consists of a record of every journey taken on
the London rail network using an Oyster card in the 31 days
of March 2010. A record in the dataset is a tuple of the form:
〈u, (o, d), to, td〉, recording that a user with anonymised id u
travelled from station o at time to, to station d at time td. In
total the dataset contains 76.6 million journeys made by 5.2
million users.

Formulating the Hypotheses
Our goal is to successfully identify areas in London with
high deprivation, so we first need to find characteristics of
passenger flow patterns, aggregated at the station level, which
relate to the IMD scores at the station location. Specifically,
we derive parameters related to the following hypotheses
based on the literature.

http://www.insidefacebook.com/2010/06/08/whos-using-facebook-around-the-world-the-demographics-of-facebooks-top-15-country-markets/
http://www.insidefacebook.com/2010/06/08/whos-using-facebook-around-the-world-the-demographics-of-facebooks-top-15-country-markets/
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1. Passenger flow is affected by deprivation. Like an fMRI
scanner detecting poor brain function when blood-oxygen
flows are not as expected, we propose to capture poor mo-
bility ‘function’ by measuring the residual between ob-
served flow sizes and those estimated by a simple yet wide-
ly used interaction model. This kind of model often incor-
porates additional parameters to account for the influence
of socio-economic factors (e.g., [4, 7]), which leads us to
surmise that deprivation will likely impose restrictions on
human mobility that we can measure.

2. Modality choice is affected by deprivation. The London
Travel Demand Survey [1] reports that income is strongly
related to public transport use. Compared to rail and tube
journeys the rate of bus use tends to increase as household
income decreases, and conversely, the rate of car use tends
to increase with higher household income. Additionally,
the survey finds that mode choice is related to age and
disability. Thus, we expect there to be a population bias in
rail users related to the level of deprivation in their home
areas.

3. Diversity increases well being. We expect diversity in the
places people visit to reflect the diversity of their social
ties, since the more diverse one’s contacts are, the less
likely they are to be concentrated in a small number of
places. Eagle et al. [5], using phone calls as a proxy
for social connections, have shown that individual level
social and economic benefits of social network diversity
scale to the population level. Here we use individual travel
patterns as a proxy for a social network, and we expect to
see a relationship between diversity of travel behaviour
and IMD scores.

Processing the Data
We begin by constructing an N × N matrix F such that N
is the number stations in the dataset and Fi,j is equal to the
average daily number of unique users who have made a trip
between stations i and j. We do not take into account direc-
tion of travel, so Fi,j = Fj,i. We also find Mi, the set of
users who reside near to station i. Since users in the dataset
are anonymous we do not know where they live, so instead
we infer their home stations using a ranking method that ex-
ploits the regularity of human travel patterns [6]. For each
user u, we rank station o based on the frequency with which
user u has departed from o. To distinguish genuine London
residents from occasional visitors, we prune trips not depart-
ing within the morning peak period, 6:30am to 9:30am, on
the assumption that the vast majority of journeys in this pe-
riod will be commutes from u’s home to a place of work. In
so doing, we also avoid counting departures from u’s other
frequented stations, such as work place in the evening. The
downside is that we may exclude residents whose main use
of the rail network is not for commuting. For every user, we
then compute a ranking vector Ru = [r1, . . . , rN ], where rk
is the number of times u has departed from station ok (with
o1 being the most frequently visited origin station). We then
assign users a home station according to the following set
of rules applied in sequence: (a) if r1 ≤ 2 (the user’s most
visited origin station has been visited no more than twice in
a whole month), the user is not assigned a home station; (b)

if r1/r2 > 0.5, assign o1 as home station; (c) if r1/r2 ≤ 0.5
and r2/r3 > 0.5, assign both o1 and o2 as home stations;
(d) otherwise, the user is not assigned a home station. Note
that up to two stations can be designated a home station for a
user, since in some parts of London there may be more than
one station within equal distance from a user’s residence,
and the choice of which one to depart from may depend on
factors which vary day to day. Finally, mi = |Mi| is the
number of users who have i as a home station. The above
steps discard 76% of users whose travel records do not re-
veal any preferential origin station (case (d)), but what is left
still amounts to more than 1.2 million users.

Feature Extraction
Metrics for hypothesis 1. Next we derive the first set of
features which involves using a gravity model to estimate
the number of travellers moving between each pair of sta-
tions. First introduced by Zipf in 1946 [22], gravity mod-
els rest on the hypothesis that the size of flow between two
areas is proportional to the mass (i.e., population) of those
areas, but decays as the distance between them grows. De-
spite some criticisms (see for example [18]), the model has
been successfully used to describe ‘macro scale’ interactions
(e.g., between cities, and across states), using both road and
airline networks [3, 8] and its use has extended to other do-
mains, such as the spreading of infectious diseases [2, 21],
cargo ship movements [9], and to model intercity phone calls
[11].

Here we posit that a gravity model can be used to estimate
passenger flow at the intra-city level. The model takes the
form:

F esti,j = g
mimj

d2i,j
(1)

where F esti,j is the estimated flow, or number of users mov-
ing between stations i and j, g is a scaling constant fitted to
the data, and di,j is the distance between them, for which
we use the mean travel time between i and j computed from
the transit data. Flows between areas with large mass (large
number of home users) and at short distances are predicted
to be large, whereas flows at longer distances or between ar-
eas with low mass are predicted to be small. Overall, the
correlation between the observed traffic flows and gravity
model estimates, measured with the Pearson Correlation Co-
efficient, is as high as .72, which suggests that overall the
gravity model provides a good description of the movement
of passengers between stations, but also that there is still
a significant amount of variation not accounted for by the
model.

We posit that this unexplained portion is due to prevailing
socioeconomic factors. Thus, we are interested in where the
model fails to fit well, that is, the cases where the residual
(prediction error) between the observed and estimated edge
weight is high. For example, the residual between observed
and estimated flow between London Bridge and Canada Wa-
ter, two areas with similar IMD scores, is just 7.9. Con-
versely, for Liverpool Street and Bethnal Green, which are
a similar distance apart but with very different IMD scores,
the residual is −1074.742. Figure 1(a) shows the cumula-
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Figure 1. (a) Cumulative distribution of the mean of gravity residuals
at each station. Note that less than 1% of stations have a positive grav-
ity residual, meaning that the gravity model tends to overestimate flows
(this is not a plot of Gµ which is the mean absolute residual); (b) fre-
quency distribution of standard deviations of station gravity residual
Gσ .

tive distribution of the mean residual at each station. We
see that not only is there an acute tendency for the grav-
ity model to overestimate, but also a significant number of
stations exhibit a large negative mean residual. As param-
eters in our classification model, for station i we compute
the mean (Equation 2) and standard deviation (Equation 3)
of the absolute residual on the edges connected to i:

Gµi =
1

ki

∑
j∈Si

|F esti,j − Fi,j | (2)

Gσi =

√∑
j∈Si

(F esti,j − Fi,j)2 (3)

where Si is the set of stations such that Fi,j > 0, ∀j, and
ki = |Si|. For example, Drayton Green has below average
IMD scores and Gµ = 0.282 and Gσ = 0.809. In con-
trast Canary Wharf, which has above average levels of de-
privation despite being a busy financial business centre, has
Gµ = 38.295 and Gσ = 117.032.

Metric for hypothesis 2. The next feature we derive aims
to exploit the previously mentioned discrepancy in bus us-
age between those in high and low income brackets. All else
being equal, we would expect mi to be proportional to the
size of the population around i. Thus, we define the pop-
ulation bias as the residual between the observed number
of home users, mi, and that estimated from the population.
First we define the population Pi around station i as the sum
of a fraction of the population of each census area whose
population-weighted centroid is within 1km of i. We choose
a 1km radius based on London Travel Demand Survey find-
ing that the percentage of journeys made by walking is 90%
for journeys less than 0.5km, 60% for 0.5-1km and drop-
ping to below 25% for longer journeys [1]. The size of each
fraction is determined with a probability proportional to the
distance between the centroid and the station. This method
allows the population of each census area to be distributed
between several nearby stations which reflects the fact that
a person’s closest station may not always be on the shortest

path to a given destination. Finally, the formula for popula-
tion bias at i is:

Qi = log(mi)− (α+ β log(Pi)) (4)

where coefficients α and β are fitted by linear regression.
Large negative values of Qi are associated with a bias to-
wards other forms of transport. Large positive values on
the other hand are associated with a bias toward using the
rail system. Figure 2(a) shows the distribution of population
bias, which is roughly normal. We also include the mass,mi,
of the census area in order to control for population size.

Metric for hypothesis 3. Finally, we define two measures
of diversity of travel behaviour. For those users for whom
we have assigned a home station we follow [5] and measure
the diversity of user u’s connections as:

diversity(u) =
−
∑
i∈Su

vu,i log(vu,i)

log(|Su|)
(5)

where Su is the set of stations visited by u, and vu,i is the
proportion of all u’s visits to station i. The numerator in this
equation is the Shannon entropy associated with u’s travel
behaviour, which is normalised by the log of the number of
stations u has visited. Users who visit many places with
equal propensity have high diversity, whereas users who tend
to concentrate their visits to a few places are considered to
have low diversity. The user diversity at station i, denoted
Hi, is then the mean of the diversity of all users assigned to
i.

Hi =
1

mi

∑
u∈Mi

diversity(u) (6)

As a second measure of the diversity of a station, we also in-
clude the degree of station i, or the number of other stations
to which it is connected, ki. We include this as we expect
the number of connections an area has to increase opportu-
nities for social and economic development, thus lessening
the likelihood of deprivation. We include the distribution of
station diversity and degree in Figures 2(b) and 2(c) respec-
tively.

TESTING THE HYPOTHESES
To determine whether our hypotheses are valid, we use lin-
ear regression analysis. At each station the 8 IMD scores (7
domains and composite) are defined as those of the census
area whose population weighted centroid is closest. Figure
4(a) shows the geographical layout of census areas in Lon-
don. Areas that contain a railway station are coloured ac-
cording to composite IMD score, where 1 is most deprived.
For these areas, each of the 8 IMD scores then becomes the
outcome variable for regression, with the features described
above in Section (and summarised in Table 1) as the predic-
tor variables. Where necessary, predictor variables undergo
a logarithmic transformation, and in addition, we take the z-
score of each variable, with allows us to judge the relative
influence of each factor in terms of their unit standard devi-
ation. For brevity, in Table 2 we present only the results of
the composite IMD score, Living Environment, which has
the highest R2 out of the composite plus 7 domains, and
Crime, which we include to demonstrate the variation in the
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Figure 2. Frequency distributions of (a) population bias Q; (b) station diversity H; and (c) station degree k.

Fi H1 Total flow of station i.
Gµi H1 Mean absolute gravity residual at i.
Gσi H1 Standard deviation of gravity residual at i.
Qi H2 Population bias at i.
mi H2 Mass of i, or number of home users.
Hi H3 Mean user diversity at i.
ki H3 Degree of station i.

Table 1. List of parameters for the classification models - column 2
gives the corresponding hypothesis.

influence of each feature. In all three examples, Gµ and Gσ ,
which correspond to hypothesis 1, as well as Q, which cor-
responds to hypothesis 2, are significant. The sign of the
coefficient of Gµ is negative, which indicates that depriva-
tion is expected to increase as this factor decreases. Recall
that Gµ is the mean of the absolute value of residuals, and
from Figure 1(a) we see that the vast majority of residuals
are negative, so larger values of Gµ correspond to overes-
timates. This means that the more the gravity model over-
estimates the flows in and out of a station, the more likely
that station is in a deprived area. Therefore, this supports
our hypothesis that deprivation may represent a restriction to
travel, although we cannot infer a causal link. The variance
in gravity model error, Gσ , has a positive sign, meaning that
deprivation tends to increase as this factor increases. In other
words, in cases where the gravity predicts flows between ar-
eas to be similar, but in fact they differ, we also see a rise
in deprivation - a result which is arguably also in support of
hypothesis 1.

The coefficient of transit mode bias, Q, has a negative sign;
however, unlikeGµ, this factor has a mean of approximately
zero, even before the z-score is taken. So in this case, when
more people use the tube than expected (when Q is posi-
tive) the regression model expects deprivation to be lower.
On the other hand, when less people use the tube than ex-
pected (when Q is negative) the model expects deprivation
to be higher - this supports hypothesis 2. The support for
hypothesis 3, however, is less clear at this stage. Diversity,
H , is significant and positive for Composite and Living En-
vironment, which tells us to expect deprivation to increase
as diversity increases - the opposite of our hypothesis - al-

though the coefficient of H for living environment is very
small. A possible explanation is that diversity of travel be-
haviour is not a reliable proxy for social network diversity
(recall that this was part of the motivation behind hypothesis
3), but instead it may reflect the need of residents to travel to
several different places due to lack of provision in their local
area. In contrast, we find that the coefficient of the degree of
a station, k, is negative, which is in line with our hypothesis
that degree may reflect a higher level of economic opportu-
nity (although k is not significant for Living Environment or
Crime). In any case, with the exception of Living Environ-
ment, the values of R2 indicate that only around 9 − 13%
of the variance in deprivation can be explained by the flow
attributes. For this reason, we also tested for interactions be-
tween the attributes by including all pairwise products in a
linear model, the results of which are shown in Table 3.

For reasons of space, we do not attempt a detailed interpreta-
tion of each of the coefficients, and again we show only three
example domains. Note, however, that each of the features
derived from passenger flow has a significant effect at some
point, either alone or in combination. Furthermore, the R2

values have increased, suggesting that the features explain
up to 20% of the variance in deprivation - given the com-
plexity of the problem, we believe this is a good result. An
interesting result is that none of the interaction terms are sig-
nificant for Living Environment, suggesting that either the

Composite Liv. Env. Crime
Intercept .361 *** .487 *** .583 ***
F .252 * .070 -.086
Gµ -.180 *** -.111 *** -.060 *
Gσ .104 * .231 *** .109 **
Q -.141 ** -.229 *** -.089 **
m .074 .074 .162 ***
H .022 * .001 *** .009
k -.116 *** .031 -.045
R2 .092 *** .344 *** .085 ***
Adjusted R2 .080 *** .336 *** .073 ***

Table 2. Estimated coefficients of Composite, Living Environment and
Crime domains (Significance codes: * p < 0.05, ** p < 0.01, ***
p < 0.001).



Composite Liv. Env. Crime
Intercept .369 *** .467 *** .583 ***
F .449 *** .232 * -.153
Gµ -.248 *** -.226 *** -.020
Gσ .110 .221 *** .106 *
Q -.044 -.199 *** -.085 *
m -.202 * -.017 .142 *
H .035 ** -.003 .018
F : Gµ .216 .102 .303 *
F : Gσ -.466 -.171 -.624 *
F : Q .705 .205 .776 **
F : H .221 * .105 .266 **
Gµ : H -.084 -.029 -.104 *
Gµ : k -.343 * -.071 .012
Gσ : m .312 .003 .568 *
Q : m -.152 ** -.069 -.124 **
m : k .169 .145 .288 *
H : k -.073 * -.041 -.112 *
R2 .199 *** .392 *** .195 ***
Adjusted R2 .154 *** .358 *** .151 ***

Table 3. Estimated coefficients of Composite, Living Environment and
Crime domains, including pairwise interactions. Predictor variables
which no significance in any of the three examples have been omitted.
(Significance codes: * p < 0.05, ** p < 0.01, *** p < 0.001).

linear relationships found above exhaust the effect of the fea-
tures on deprivation in this domain, or, on the contrary, the
dependency between each feature is more complex.

Finally, we repeat the above analysis but this time we prune
the data points that fall in second and third quartiles of each
domain score, thus, we concentrate on the extreme exam-
ples and effectively treat the intermediate cases as noise.
Note that different stations will appear in the pruned sam-
ple for different IMD domains. At this point there are two
things worth pointing out: the values ofR2 have risen, which
shows that by treating the middle quartiles as noise we are
able to discern a stronger dependency between the flow fea-
tures and deprivation in each of the three examples, and the
significance of some features has changed. In particular, H
is no longer a significant factor by itself in any of the exam-
ples, and for the Living Environment domain we now find
that some interaction terms are significant. In general, the
change in significance of various attributes suggests that as
circumstances change in an area, different factors come in to
play, and serves to highlight the complexity of the situation.

In conclusion, the nature of the relationship between the flow
features we derived from transit data has thus far evaded a
precise description. Nevertheless, we have seen strong sup-
port for hypotheses 1 and 2, with a clear dependency be-
tween the corresponding features and deprivation in various
domains. It is less clear at this stage whether or not hypoth-
esis 3 has any validity.

We next describe how we use the features of passenger flow
to build classification models which can identify areas of
high deprivation.

Composite Liv. Env. Crime
Intercept .382 *** .504 *** .586 ***
F .434 * .103 -.088
Gµ -.351 *** -.194 -.119 *
Gσ .223 * .387 *** .162 *
Q -.238 ** -.346 *** -.134 *
m .122 .057 .252 **
H .037 .010 .005
k -.199 *** .082 -.079 ***
R2 .160 *** .508 *** .146 ***
Adjusted R2 .138 *** .494 *** .123 ***

Table 4. Estimated coefficients of Composite, Living Environment and
Crime domains after pruning the second and third quartiles (Signifi-
cance codes: * p < 0.05, ** p < 0.01, *** p < 0.001).

Composite Liv. Env. Crime
Intercept .422 *** .468 *** .595 ***
F .728 ** .587 ** -.192
Gµ -.454 *** -.558 *** -.054
Gσ .371 ** .399 *** .186 *
Q -.053 -.235 *** -.161 *
m -.451 ** -.210 .228
k .116 .113 * -.029
F : Gσ -.927 -.662 -1.103 *
F : m -.417 -1.609 * -.175
F : k -.316 .537 * -.304
Gµ : k -.457 -.658 ** .027
Gσ : m .078 .404 .499
Q : m -.373 *** -.028 -.211 **
H : k -.033 -.023 -.115 *
R2 .345 *** .587 *** .283 ***
Adjusted R2 .269 *** .539 *** .200 ***

Table 5. Estimated coefficients of Composite, Living Environment and
Crime domains, including pairwise interactions after pruning the sec-
ond and third quartiles. Predictor variables which no significance in
any of the three examples have been omitted. (Significance codes: *
p < 0.05, ** p < 0.01, *** p < 0.001).

IDENTIFYING DEPRIVED AREAS
We formulate the problem as one of binary classification, in
which the goal is to identify areas which fall into the top
quartile of each of the 8 IMD scores (higher scores corre-
sponded to higher deprivation). We define the response vari-
able as yi = 0 if station i is in the 1st quartile and yi = 1
otherwise. As before, we prune the middle quartiles, since
we are interested in classifying the extreme examples. In so
doing, we also ensure a roughly 1 : 1 ratio of positive to
negative examples in each class, as opposed to a 1 : 3 ratio
had we retained the 2nd and 3rd quartiles. We compare the
results of two linear regression models, the first with each
feature as a predictor variable (LR1), and a second model
with each pairwise interaction included (LR2). Since the re-
sponse variable is y = {0, 1} we transform the output of the
regression models, y′, in the following way:

y =

{
0, y′ ≤ 0.5
1, y′ > 0.5

(7)



Precision Sensitivity Specificity R2

Composite .597 .634 .666 .109
Income .609 .527 .692 .127
Employment .571 .429 .699 .084
Health .642 .506 .687 .099
Housing .714 .605 .747 .184
Crime .771 .782 .764 .162
Liv. Env. .819 .771 .826 .521
Education .702 .753 .649 .141

Table 6. Classification scores for LR1

Precision Sensitivity Specificity R2

Composite .803 .666 .848 .353
Income .731 .740 .734 .358
Employment .725 .673 .758 .301
Health .760 .704 .772 .354
Housing .742 .712 .799 .428
Crime .777 .784 .779 .372
Liv. Env. .852 .832 .834 .621
Education .687 .787 .643 .312

Table 7. Classification scores for LR2

Precision Sensitivity Specificity
Composite .805 .733 .810
Income .705 .729 .733
Employment .694 .701 .718
Health .779 .736 .648
Housing .779 .662 .818
Crime .761 .756 .769
Liv. Env. .902 .793 .928
Education .644 .723 .615

Table 8. Classification scores for SVM

Since our previous analysis points toward a complex rela-
tionship between the flow features and deprivation, we also
try a support vector machine (SVM) with a radial basis func-
tion for the kernel function. The SVM has the advantage that
by projecting the input variables onto a higher dimensional
space, it is better able to split the input data. The downside
to this, however, is that we cannot interpret the role played
by each of the predictors, unlike linear regression, for which
we can determine the significance of each. For each model,
we randomly split the data into a 90% training set and 10%
test set, and cross validate by repeating this 10 times.

Performance measures. The performance of each model is
assessed using three measures:

precision =
TP

TP + FP

sensitivity =
TP

|P |

specificity =
TN

|N |
where TP is the number of true positives, or correctly iden-
tified high deprivation stations; FP is the number of false

positives, or stations incorrectly identified as having high de-
privation; and |P | and |N | are the total number of positive
and negative cases respectively. In the present context, pre-
cision measures the proportion of areas classified as highly
deprived which are in fact highly deprived. If we assume that
a verification cost would be incurred for each area classified
as highly deprived, precision would represent the confidence
that this cost would not be wasted. It is therefore important
that this score is high. Sensitivity (or recall rate) is the pro-
portion of positive examples (stations with high deprivation)
in the test set that are correctly identified (i.e., a sensitivity
of 1 means all high deprivation areas have been identified).
This is perhaps the most important performance measure in
the present context, since the idea is to quickly identify areas
in need of intervention. Low sensitivity would mean several
areas go unreported, thus negating the utility of this kind
of classifier. On its own, however, sensitivity is unreliable,
since a classifier which labels all examples as positive will
have a sensitivity of 1. Specificity is the proportion of neg-
ative examples correctly identified as such. High specificity
means that for an area identified as deprived, there is a high
probability that it is deprived. For the linear regression mod-
els we also give the mean value of R2 for the training data,
which represents the proportion of variance in the response
variable explained by the predictor variables. This gives an
idea of how well the model fits the training data.

Results. We report the mean of the 10 iterations for LR1,
LR2 and SVM in Tables 6, 7 and 8 respectively, and for eas-
ier visual comparison we have plotted precision, sensitivity
and specificity for each model in Figures 3(a), 3(b) and 3(c).
The performance of each model can be interpreted relative to
a baseline random classifier, which after a sufficient number
of iterations averages out with a precision, sensitivity and
specificity of 0.5. As expected, the most easily predictable
form of deprivation is the Living Environment component.
This is the only domain in which LR1 performs well, with
high precision, sensitivity and specificity. Note that R2 dif-
fers from that reported in Table 2 since it is computed against
the response variable y = {0, 1}, as opposed to y = (0, 1).

Overall, the best results come from LR2 and SVM. For the
composite IMD score, SVM correctly identifies high depri-
vation 80.5% of the time, and correctly identifies low de-
privation 81% of the time. Figures 4(b) and 4(c) provide a
geographic illustration of the performance an example SVM
model for the composite IMD domain. Each census area
is coloured according to class (i.e., bottom quartile or top
quartile). Note that only census areas containing stations,
and which fall in the 1st or 4th quartile are coloured, hence
the map is very sparse. Interestingly, LR2 achieves higher
specificity in the composite score, as well as higher sensitiv-
ity than SVM in Living Environment, Housing, Crime and
Education, suggesting that it may be pertinent to test a mixed
classification model in order to achieve the best possible re-
sults. A pleasing result is that scores are fairly high across
all domains, which demonstrates the potential for identify-
ing specific kinds of problems, rather than just an overall
indication of community well being.
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Figure 3. Graphical representation of classification scores.

Precision Sensitivity Specificity
Hypo. 1 .640 .539 .702
Hypo. 2 .716 .413 .816
Hypo. 3 .679 .662 .643
Hypo. 1 + 3 .774 .548 .856

Table 9. Performance of SVM classification using features from each
hypothesis.

To assess the level of support for our three hypotheses we
also trained an SVM model to classify areas in terms of
composite IMD, using only features corresponding to each
hypothesis separately. Again, we report the average of 10
runs, and the results are presented in Table 9. Each of the
performance scores in Table 9 is higher than that expected
from a random classifier, with the exception of sensitivity
for Hypothesis 2. This tells us that the features related to
this hypothesis, population bias Qi, and mass mi, struggle
to pick out deprived areas and instead tend to classify the
majority of areas as undeprived. We can, however, still con-
clude that Qi and mi have predictive power, since an SVM
model trained without these features (last row in Table 9)
performs less well than one with these features. In general
the results suggest that each group of features offers some
predictive value, that is, each of the hypotheses has some
support, although more work is needed to determine the pre-
cise relationship between each of the features and the level
of deprivation in a census area.

DISCUSSION
In this section we begin by discussing the main contributions
and implications of our work, before examining its limita-
tions and detailing proposals to extend the research.

Implications
This work adds to the growing literature exploring the ways
in which ubiquitous technologies can be used to unobtru-
sively track the well being of communities [5, 10, 12, 16,
17]. We demonstrated a significant link between census area
measurements of deprivation in multiple domains, and pat-
terns of passenger flow in public transport systems. More-

over we have shown that the relationship between passen-
ger flow and urban deprivation is strong enough to build a
classification model that uses features extracted from flow
data to identify areas of high deprivation. In the spirit of
‘smart-cities’, predictions derived from transit data could
form an element of a ‘city dashboard’ style application3,
providing real-time information to city planners, policymak-
ers and community members. By providing an early warn-
ing, such a tool would dramatically reduce the time frame
within which local authorities identify areas of high depri-
vation, thereby increasing the efficiency with which limited
resources are allocated to regeneration and renewal initia-
tives.

The ability to identify well being and inequality could also
benefit communities by enabling residents to asses the ef-
fects of regeneration projects and hold local authorities to
account. Presently, this is only possible after a number of
years, when census based data has been collated and pub-
lished. Additionally, a city health monitor could help fa-
cilitate community-directed campaigns and projects, such as
participatory mapping initiatives like mappingforchange.
org.uk, where residents are asked to vote for what they
need the most, and then plan how to spend money accord-
ingly, and digitaldemocracy.org, a platform which
allows anyone to initiate and garner support for local cam-
paigns. This kind of tool could provide a source of evi-
dence for these types of projects and enable a comparison
between areas by assessing the benefits of implementing dif-
ferent policies.

Limitations and Extensions
As previously mentioned, we acknowledge that as we pruned
intermediate data points from the training and testing pro-
cess, there is further work needed to be done in order to ver-
ify the results. This would involve classifying all data points
in the first three quartiles as not deprived, or introducing a
third class to represent moderately deprived areas. Possible
ways to improve the models to overcome this limitation in-

3e.g., http://citydashboard.org/london/

mappingforchange.org.uk
mappingforchange.org.uk
digitaldemocracy.org
http://citydashboard.org/london/
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Figure 4. a) Census areas containing stations coloured according to real composite IMD score; b) stations which fall in the 1st or 4th quartile for
composite IMD, classified as high or low; and c) predicted classifications for the same areas.

clude exploiting other variables available in the Oyster data,
such as ticket price and card type (e.g., standard, student, el-
derly and disabled). We have also begun to develop methods
to capture implicit semantic information such as trip pur-
pose, and derive new features such as a gravity residual for
each trip type, which we believe are important factors to con-
sider. For example, the rate of commuting may be related to
the Employment domain, the number of leisure trips may be
related to Income or Crime domains. A further modifica-
tion would be to measure flows bidirectionally, rather than
unidirectionally. This would give us information regarding
stations acting as both origin and destination, and allow us
to define an asymmetrical gravity model.

A further limitation is that our dataset includes only rail trips
and as such we do not have a complete picture of passenger
flow patterns in London. Relatedly, the number of areas for
which we can make predictions is limited by the geographi-
cal coverage of the rail system. Out of a total of 4766 census
areas in London, 588 (that is, 11.2%) contain tube or rail
stations. With a similar analysis of passenger flow between
bus stops we would be able to extend the coverage to the
whole of London. Unfortunately we are unable to perform
the same analysis on bus trips, since there is no requirement
to scan an Oyster card at the end of a bus journey, thus only
the origin is recorded. We have, however, developed a proxy
for bus usage bias (Qi) which could potentially be extended
beyond the rail/tube network.

We have thus far only tested the models laterally, that is,
training and testing on different stations from the same pe-
riod in time. To establish the genuine worth of building such
predictive models, we plan to perform a longitudinal study
in which models are tested on newly available data pertain-
ing to trips made several months after the data on which
they were trained. Furthermore, a second important verifi-
cation step is to test our method on data pertaining to dif-
ferent cities, although at present we do not have transit data
from other cities at our disposal. Finally, we plan to inves-
tigate the utility of supplementing transit data with sources
such as Foursquare (and other similar location oriented ap-
plications) check-in data, which has been used previously
to study global and city scale human mobility patterns [15].

By combining different datasets we can build a multiplex
network (i.e. network with multiple types of edge), which
may offer additional insights into the relationship between
mobility, social structure and well being.
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